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ABSTRACT 
Memcached and other in-memory distributed key-value stores play a critical role 

in large-scale web applications, by reducing traffic to persistent storage and 

providing an easy-to-access look-aside cache in which programmers can store 

arbitrary data. These caches typically have a narrow interface, consisting only of 

gets, sets, and compare-and-set. In the worst case, this interface can cause 

significant inefficiencies as clients get large data items, perform small changes, 

and then set the updated items back into the cache. 

We present extensions to memcached that allow the system administrator to 

dynamically load custom code modules into memcached, so that clients may 

execute code directly on the memcached server. Our system permits both fetch-

and-phi operations, which update the cache, and filtering operations, which 

compute a function over the data in the cache, and return the result to the client 

without making an update to the cache. We evaluate our extensions on 

benchmarks based on workload traces from a Cable/Internet service provider, 

and find that our new functionality provides a means of dramatically reducing 

network overheads and increasing responsiveness. 

4



www.manaraa.com

1 Introduction 
One of the most critical components of interactive distributed systems is an in-

memory cache of key/value pairs [1]. This cache can serve many roles, to 

include providing fast access to information from persistent table stores like 

HBase [19], BigTable [2], Silt [12], Cassandra [20], and Dynamo [3]; caching 

results from expensive joins in traditional relational databases [1]; and storing the

result of expensive computations. 

Memcached [14] is one of the most popular and widely-used key/value caches. 

Memcached is a lookaside cache, and when a client fails to find data at a 

memcached server, it must both (a) contact the next tier of the storage 

infrastructure to acquire the data, and (b) decide whether to update memcached 

with the data. Memcached uses an LRU policy to age and evict data, and is 

oblivious to the nature of the data it stores: it treats keys and values as untyped 

byte arrays. With regard to access control, memcached instances are open: they 

assume they are protected by a firewall, and never configured to provide service 

to untrusted clients. Any machine that can send requests to the memcached 

server can get and set any key/value pair. 

In embodying the mantra “do one thing, and do it well”, memcached and other in-

memory stores manage to provide high performance and value to a diverse 
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spectrum of distributed systems, while consisting of a rather small and easy-to-

understand code base. At the same time, memcached is compatible with a 

number of best practices in distributed computing, which ensure good system-

wide performance. It is well known that locality of data relative to the site of 

computation is a critical factor in distributed systems [7, 11, 18], and replicated 

memcached servers can be installed at network edges, to provide fast access to 

most data. To improve load balancing [10], keys are hashed to decrease the 

likelihood that any individual memcached server has a higher-than-average load, 

and again, replicated memcached servers can be employed. 

Despite these benefits, in-memory object caches can be a performance 

bottleneck. The motivating example on which this work is based is the 

infrastructure behind the user interface (UI) of Comcast’s XFINITY X1 platform. 

Millions of set-top boxes in a geographic market serve as thin clients, forwarding 

clicks from a customer’s remote control to Comcast logic servers, where the 

clicks are processed. In response to a click, a logic server will access the cache 

and/or persistence layer, and then render a new screen that is sent back to the 

customer. The Comcast servers are configured in three layers: a Cassandra-

based persistent store, a memcached layer, and a custom logic layer where each

server is assigned hundreds of set-top boxes in a one-to-many relationship. Each
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layer is independently fault-tolerant and redundant, typically through replication. 

Unlike many bursty workloads, this system experiences predictable spikes in 

use. Consider the case of digital video recorder (DVR) operations: at a fixed time 

(e.g., 9:00 PM), a million customers might simultaneously wish to stop recording 

one program, and begin recording another. Each of the logic servers must, for 

each of its dedicated set-top boxes, start or stop a physical recording operation, 

and then update the customer’s UI metadata to indicate the new recording 

status. The UI data must be stored several ways, since the underlying Cassandra

storage is denormalized; first, the individual recording is updated, and then the 

denormalized views of the recordings (“scheduled recordings”, “in progress 

recordings”, “completed recordings”) are updated. 

Consumer habits necessitate that the data is cached for fast access, since the 

customer is likely to verify that recordings have been initiated, and to frequently 

browse through the DVR listing; allowing each query to reach the Cassandra 

database would introduce too much latency. In contrast to DVR operations, these

interactive queries are not concentrated at the exact times when programs begin 

and end. The result is a spike in utilization when DVR recording statuses change,

which has come to be known as the “top of the hour” problem. Engineers at 

Comcast have managed to reduce the spike from orders of magnitude to about 
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2.5x. However, the bursts are too regular to be mitigated through sharing other 

servers, since the burst is periodic and relies on data being stored in-memory. In 

effect, handling the bursts requires a large number of servers that are 

underutilized most of the time. 

In analyzing this problem, we identified a trend that we believe generalizes to 

many workloads: writes of a datum are preceded by a read of the same datum, 

and the amount of data modified by a write is a small fraction of the overall 

object. When coupled with the fact that many objects are large (tens, if not 

hundreds of kilobytes), an opportunity emerges: if it were possible to update the 

object directly in the cache, and then return only the updated object, we could 

halve the number of network round trips, and halve the required bandwidth. 

The behavior we wish to achieve is depicted in Figure 1. On the left side, there 

are two expensive communications, labeled 3 and 5, which correspond to getting

a large object O and setting the updated object O′ back into the cache. The 
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messages sent in steps 2 and 6 are small, representing a get request, and an 

(optional) acknowledgment. On the right hand side, when the computation 

(represented by a star) migrates to the cache server, one round trip network 

communication is avoided, and the only large object transmission occurs at step 

4. 

In this paper, we extend memcached to allow in-cache computing. Our system is 

based around the concept of an atomic fetch-and-phi primitive [8], which allows a

programmer to instruct memcached to get an object, invoke a function on that 

object (possibly involving programmer-specified parameters), and set the result 

back into the cache, all in a single atomic operation that then returns the 

computed value. We decompose the fetch-and-phi to relax atomicity, to elide the 

set, or to omit the response. Through evaluation on microbenchmarks that use 

traces from Comcast’s production servers, we show that moving computation into

the cache can reduce overheads and increase throughput by more than 30%. 

The remainder of this paper is organized as follows. In Section 2, we provide a 

brief overview of the memcached interface and API. Section 3 presents the 

algorithm for our client-facing modifications to memcached, through which a 

programmer can execute code on the memcached server. Section 4 details the 

administrative interface we propose for supporting fetch-and-phi without 
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completely opening up a server to the possibility of running arbitrary unreliable 

code. In Section 5, we discuss a workload generator we created. The generator 

uses traces collected from Comcast servers as the basis for the workloads run by

clients. Section 6 presents experiments, and Section 7 discusses related work. 

Section 8 discusses future work and then conclusions. 

2 The Memcached Client API and Extensions 
The existing interface to memcached appears in Table 1. Several of these 

functions can take multiple keys as parameters. For clarity, we omit discussion of

this functionality. Three functions comprise the primary API: get takes a key as its

parameter, and returns the corresponding object; set takes a key and value, and 

updates the value stored at that key; delete removes a key/value pair. Each key 

is stored along with a version number that is incremented by memcached on 

every set, replace, append, prepend, incr, and delete. By using gets instead of 

get, a client can observe this value. The cas operation employs this value to 

achieve a read-modify-write effect, akin to load-linked/store conditional 

instructions: it takes a key, a new value, and the value of the counter. It updates 

the pair to the new value if and only if the counter values match. On a successful 

cas, the counter value is updated. 
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When the value stored with a key is an integer, the incr and decr functions can 

be used to achieve an atomic increment or decrement in a single instruction. 

Memcached effectively locks the key/value pair, updates the value, and then 

releases the lock. The same approach can be used when the value is treated as 

a raw byte array, and the desired operation is an append or prepend. However, 

there is an additional constraint in this case: memcached uses a slab allocator, 

such that every object has a size class associated with it. Within the size class, 

each object is stored with some amount of internal fragmentation, and a prepend 

or append will fail if the new object cannot fit in the object’s existing slab class. 

The set, add, replace, and cas operations are not subject to this restriction, since 

they assign the newly provided data to the key, instead of modifying the key in-

place. 
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To this API, we add two new operations: 

register(): The register() function provides a mechanism for performing inserts 

and lookups into a map. The map stores < string, f unction > pairs, where the 

string is a programmer-visible name. The function returns a boolean, indicating 

whether or not it succeeded. It takes the following parameters: 

Logically, the map is protected with a readers/writer lock, which is held in write 

mode whenever a register() operation is performed. We discuss the use of the 

register() function in Section 4, to include discussion of a technique through 

which the use of a lock to protect the map can be avoided. 

Invoke(): The invoke() function is used to execute a registered function on the 

memcached server. It takes the following parameters:
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The API makes no assumptions about how invoked functions are used. The 

boolean parameters provide the programmer with knobs for using the function as

a filter, a fetch-and-phi, or an atomic fetch-and-phi; and for indicating whether the

client expects a reply. 

3 The Client Interface 
In this section, we discuss the high-level implementation of the invoke function. 

We then describe usage scenarios and potential pitfalls. We focus on an 

implementation that executes user code directly in the context of the memcached

server process. Section 4.2 discusses a programmer-defined technique for 

executing code in a more sandboxed setting. 

3.1 Implementing Invoke() 

Algorithm 1 presents the pseudocode for the invoke() operation. The client issues

an invoke request by supplying the name of a function to execute, the key whose

data will be used by the function, parameters, and a few flags. 

The operation consists of five stages. The first stage entails locating the code 
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that will be executed. This is achieved via a lookup in the map. Though generally 

straightforward, we note that the map is not protected by a lock: the register 

operation is responsible for ensuring that the map isn’t modified while it might be 

accessed by client invoke operations. 

In the second stage, we fetch the data currently associated with the key. We can 

fetch the data along with its current version count (line 7) or else without the 

version count (line 9), depending on whether the operation will ultimately perform

an atomic fetch-and-phi. Note that when update is false, the atomic flag is 

superfluous. Furthermore, in the common case (where the named function is free

of side effects), invokes that do not set are naturally atomic, in that they have a 

linearization point [9] at the time of the get. 

The third stage of invoke() involves calling the requested function, passing the 

key, current value, and parameters. This produces a status message 

(success/failure) as well as a new byte array. This byte array may be a new 

version of the value, or some computed value of some other type. The meaning 

of the contents of the new_val parameter are user-defined. 

The fourth stage is to update memcached so that the new value is associated 

with the key. This can be done atomically or nonatomically, based on the 

parameters to invoke(). For brevity, we omit details of how errors at this point are 
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relayed to the client. The final stage returns the result of the function to the client,

if a reply was requested. Otherwise a short acknowledgment of success or failure

is returned to the client. 

3.2 Usage Scenarios 

While our focus is on reducing overhead for a pattern built upon get and set, our 

invoke() implementation is general enough to support four usage patterns: 

Basic Filtering: When the persistent layer is implemented using a NoSQL 

database, it is likely that there will be denormalized data in the cache. This is a 

common optimization for non-relational databases, where the programmer must 

maintain the relationships among data by storing rows in an additional table. It is 

often easier to over-denormalize, and store very large objects, in order to avoid 

maintaining multiple denormalizations. In this case, as well as the case where 

individual objects are large, filtering can dramatically reduce overhead. 

At its simplest, filtering entails returning only part of the object, in order to reduce 

bandwidth. For example, a client program attempting to get the next DVR 

recording to initiate does not need a full list of scheduled recordings; if the 

recordings are sorted by start time, then it suffices to return the first recording. 

When all pending recordings are saved as a (serialized) array in memcached, 

filtering allows the transmission of a specific array entry. To achieve filtering, the 
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client calls invoke with both atomic and update set to false. Note that a simple 

filter is an atomic operation, since the value is read atomically through a standard

get call. 

Filtering with Computation: In the former case, filters were little more than field 

selectors, serving to limit the amount of data returned to the client. It is equally 

straightforward to employ a pure computation within the invoked function, and 

thus to add computation to the filter. This enables, for example, computing 

statistics over the entries of an array stored in the cache. Furthermore, the 

function need not be pure. As an extreme example, the function could open 

another connection to the same memcached server to request additional data. 

Fetch-and-Phi The compare-and-set mechanism I nmemcached more closely 

resembles the Load Linked/Store Conditional pair of instructions that are 

common in RISC processors [8]. Specifically, an arbitrary amount of time can 

pass between the get and the set, but the pair appears to be atomic as long as 

there is no intervening update. In memcached, this is achieved by attaching a 

counter to the pair, and incrementing it on every update. When both atomic and 

update are true, the behavior of invoke gives precisely the behavior of a load-

linked/compute/store-conditional sequence in traditional shared memory 

synchronization. For functions that are side-effect free, or whose side effects are 
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not visible to concurrent threads, the result is an atomic fetch-and-phi. Note that 

setting atomic to false results in a similar effect to implementing a shared counter

with loads and stores: atomicity can be violated if there is sharing, but it is safe 

as long as the underlying pair (or counter) is not shared. 

Set-and-Go When the client updates the cache, it often must also send a message

to the next level of the storage hierarchy (e.g., a NoSQL database) to ensure the 

persistence of the new data. Whereas fetch-and-phi is ideal when the client does 

not have the data on hand, set-and-go serves the case where the client can 

compute the new value without a preceding query. In this case, rather than send 

the entire new object to the cache, the client can re-execute the function at the 

cache, store the result, and not send a reply. If the object is not found, then it 

remains uncached. For cached objects, this pattern avoids sending large objects 

after small modifications, an allows the in-cache update to execute concurrently 

with the client. 

3.3 Concerns 

Any time code is dynamically loaded into a high-availability process, there are 

causes for concern. Buggy code can cause the process to crash. Long-running 

code can keep a thread occupied for an extended period, causing a service 

degradation or denial of service. Worse, the code may interact with the operating 
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system to cause the process to block, lose priority, or release needed resources. 

As we discuss in Section 4, we do not allow clients to load arbitrary code without 

the intervention of a system administrator. Since memcached servers are 

typically not publicly accessible, this should provide the minimal needed 

oversight to avoid the aforementioned problems. 

There are three additional concerns that are more specific to our design. We 

outline them briefly below: 

Multiple Keys The memcached client interface allows a single get to request 

multiple keys, or a single set to update multiple keys. We do not provide this 

ability, and instead require each invoke to operate on a single key/value. This 

choice is intended to provide clarity, since the semantics of a multi-key invoke 

are ambiguous. Should several invokes be executed as a single atomic 

transaction? Should a single function take several pairs as input, and produce 

multiple outputs that all are set into the cache? Farther afield, it would even be 

imaginable that operations could use some keys to locate input objects, and 

others to identify output objects. 

While the above opportunities are appealing, their value depends on an efficient 

fetch-and-phi. Furthermore, there are additional programming concerns that are 

outside the scope of this work. For example, any multi-key operation needs 

18



www.manaraa.com

guarantees that the keys are all stored at the same memcached node, and this is

not easily guaranteed for common hashing functions. While coalescing multiple 

independent invoke operations into a single message could decrease network 

costs, we believe that such extensions are best left as future work, after 

compelling use cases are identified. 

Copying Overheads While our implementation and discussion are focused on 

memcached, we took care to avoid algorithmic choices specific to memcached, 

unless obvious alternatives exist (e.g., the technique we use to avoid using a 

readers/writer lock to protect the map; see Section 4). However, this introduces 

overhead due to data copying. 

Specifically, when a get is performed, the value is copied from the cache to a 

temporary buffer. In our system, the function is given this buffer as input. The 

buffer must be manually reclaimed when invoke returns. Similarly, the function 

may create a new buffer to store the new value of the key. This buffer is not 

inserted directly into the cache, but instead is copied into a new pair object, after 

which it must be reclaimed. The alternative is to hold the lock on a pair 

throughout the invoke operation. However, this technique fails when the function 

produces a new value that is of a significantly different size than the input value. 

In this case, the memcached memory slab allocator would require the new value 
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to be stored in a different slab class. The motivation for direct access to objects 

in the cache, as opposed to copies, can only be in response to performance 

concerns. We discuss this topic further in Section 6. 

Data Formats Thus far, we have glossed over the actual formats of objects stored 

in the cache, and the type of the parameter provided by the client during an 

invoke call. Generally speaking, we leave these as client programmer-defined. 

However, it is worth noting that in the common case, the object format is a 

serialization of some other format (e.g., pickling in Python, or Google Protocol 

Buffers [6]). Furthermore, some memcached client libraries implement 

compression and decompression [21]. In these settings, the invoked code may 

need to decompress, deserialize, compute, re-serialize, re-compress, and then 

perform the set on line 19 or 21. Particularly in the case of compression, this can 

introduce increased CPU utilization, and possibly slowdown. 

Communication While we do not explicitly support communication from within an 

invoked function, we do not forbid it. This creates a tension. On the one hand, it 

is possible for a function to maintain a static pool of connections, and attempt to 

contact other memcached servers, or the next level of the hierarchy, in order to 

implement a form of write-through caching or atomic multi-object transactions. 

We argue that such techniques are beyond the reasonable scope for our 

20



www.manaraa.com

mechanism. For example, to implement a memory hierarchy properly, it would be

necessary to also provide a way to execute a set followed by a user-defined 

function, without performing a get to acquire the data passed to the function and 

to set. This complexity seems unjustifiable for a general-purpose system like 

memcached, unless a use case is identified. However, should such a case arise, 

we believe our work can easily be extended to support it. 

4 The Management Interface 
The obligation of the management interface is to provide a means through which 

arbitrary functions can be made available for subsequent use by the invoke() 

operation. Additional concerns relate to (a) how permission is granted for 

providing new functions, and (b) how the execution of those functions is 

sandboxed. 

4.1 The Register() Function 

We begin by describing the basic infrastructure for registering functions. We take 

the position that arbitrary clients should not be allowed to install arbitrary code 

into the memcached process. While it is possible to sandbox the execution of 

code, even sandboxing mechanisms can result in denial of service if an arbitrary 

function contains an infinite loop. To prevent this, our design requires a machine 
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administrator in order to register a new function for use with invoke(). 

We make use of an environment variable to identify the root folder for all code 

loaded into memcached. An administrator can copy shared object files into this 

directory, whereas clients cannot. Once a file is loaded into this directory, 

register() can be called to load the shared object, find a function within it, and add

a pointer to that function to a map of available functions. The sanitize() function 

ensures that any relative path (specified by a client as part of an invoke()) is 

converted to an absolute path rooted at the folder indicated by the environment 

variable. 

The behavior of register contains only one subtlety: the use of a maintenance 

mode. In memcached, a handshake mechanism exists through which the cache 

rebalance thread gains exclusive access to the entire cache. The mechanism 

entails a lock hierarchy. At the top is a single “assoc_lock”, below which are per-

item locks. When a cache rebalance is required, the maintenance thread invokes

switch_item_lock(GLOBAL). This sets a flag to indicate that all client operations 

should use the assoc_lock instead of item locks. The maintenance thread then 

waits for all in-flight client operations to complete. It thread then acquires the 

assoc_lock and performs its work. It is possible that new client requests have 

arrived in the interim, but they now use the assoc_lock, and thus do not overlap 
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with the rebalance. When the rebalance completes, the maintenance thread 

invokes switch_item_lock(GRANULAR) to return to using per-item locks. The key

feature of this mechanism is that in the common case, threads only require fine-

grained item locks, but during rebalancing, the absence of concurrency prevents 

the maintenance thread from acquiring these locks. 

By connecting the registration of new functions with this mechanism, we can 

ensure that the map is never modified while a client invoke is in progress. This 

avoids the need for a readers/writer lock for the map, which would introduce a 

bottleneck for simultaneous invoke calls. 

4.2 Sandboxing and Reliability 

For many environments, the requirement of administrator access to install code 

suffices to provide a secure and reliable environment: new functions are 

expected to be simple, so as not to affect the CPU load on the memcached 

server, and hence they ought to be easy to statically analyze or verify through a 

code review. 

However, we recognize that in some circumstances this may prove insufficient. 

For example, in an environment where the memcached clients are written in a 

high-level language (e.g., Python), the requirement to write C code that operates 

on pickled objects may be burdensome. We contend that this can be resolved 
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through a level of indirection in the new code, without further impact on the 

memcached code. 

As a concrete example, we propose that an administrator might install a Python 

process that listens on a named pipe for messages of the form (function, data, 

parameters). In response to any message, the process will consult a local map of

functions, find the appropriate one, and execute it on the data and parameters 

that are provided. It will then write its response to the pipe. If the registered C 

function simply writes its parameters to the pipe and then awaits a reply, then the

same (modulo Python function name) C code can be registered for each Python 

function. This process is somewhat more cumbersome than registering C code 

directly, and it suffers from the overheads of both (a) inter-process 

communication between memcached and the Python process; and (b) overheads

from the Python interpreter. However, it generalizes, and the same approach can

be leveraged for arbitrary managed languages. By using a timeout when reading 

from the named pipe, the C code running in memcached can simply return an 

error whenever erroneous code causes the Python process to crash. A daemon 

can re-start the Python process periodically. 

The purpose of this example is merely to demonstrate that additional sandboxing

can be introduced, if needed, to prevent erroneous code from crashing the 
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memcached server. We believe that the open source community is best suited to

providing the infrastructure for creating this sandboxing on a per-language basis, 

using a generic methodology such as that described above. Such an approach 

will also allow environment-specific optimizations (e.g., using a pool of named 

pipes, and a pool of independent Python interpreters, to avoid serialization on the

Python interpreter’s global lock). 

5 A Top of the Hour Workload 
As discussed in Section 1, the original motivation for this work was a regular 

usage spike observed on Comcast servers. At the beginning of every hour, and 

again on the half hour, requests to the memcached servers would increase 

dramatically. Increases in response time from the memcached servers caused 

cascading delays, since UIs could not be rendered until memcached responded. 

A combination of scaling out and rewriting interface code resolved much of the 

problem, but left a system that is underutilized most of the time. 
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To understand this workload better, we collected statistics from a Comcast server

over a 10-minute period that included a spike. On ten-second intervals, we 

collected statistics from the server about the number of operations performed on 

each of its memory slabs. As seen in Figure 2, the workload exhibits a burst of 

activity. 

This burst is significant for several reasons. First, during the burst, the number of 

set operations increases dramatically. Prior to the surge, the workload is 61% 

gets and 39% sets. During the surge, it becomes 40% gets, and after the surge, 

it has 55% gets. During the surge, there are two primary operations: among small

objects, there is an order of magnitude increase in the number of sets, as logic 

servers mark DVR recordings as started or stopped, and then overwrite a single-

recording object of under 1000 bytes. The logic servers are able to cache these 
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objects, and thus they need not perform a get before the set. However, they must

send the entire object, even though only 4 bytes change. The second operation 

is an update to very large objects (over 10K bytes). These objects represent 

denormalized rows, storing each customer’s set of recordings and their 

corresponding states. When the small-object set occurs, the row becomes stale, 

and must be updated to indicate the new recording state. 

Without tracing each individual TV viewer’s click behavior, it is not possible to 

determine the number of sets that (a) were part of a get/set pair, and (b) could be

replaced with a fetch-and-phi. However, there is strong evidence that these 

operations were concentrated on large objects, where the ratio of gets to sets 

remained relatively constant, though the numbers increased during the surge. 

Similarly, the set operations on small objects can be optimized: rather than 

sending an updated object, the logic servers can invoke a function that performs 

the necessary modification to the object, and does not send a reply. Again, we 

cannot precisely determine the frequency of these operations in the trace. 

However, they roughly correspond to the increase in sets of small objects during 

the surge. 

To re-create this behavior, and to create similar behaviors, we implemented a 

memcached client that is heavily parameterized, so that it can produce workloads

27



www.manaraa.com

of the same shape and operation mix as described above. Our client is a Java 

program that uses the spymemcached client library to interface to the 

memcached server. We extended spymemcached to support invoke and register 

functions, in addition to the standard interface. 

Like many real-world deployments, this workload at Comcast uses Google 

protocol buffers to serialize and deserialize data, so that arbitrary objects can be 

provided to memcached as byte streams. There are two primary object types in 

the Comcast workload, which we generate and populate with anonymized data. 

The first is a small object (roughly 480 bytes, though the exact size depends on 

the length of a few strings) that describes a specific recording of a single show, to

include the state of the recording. The second is a large object (typically 10K 

bytes, though the trace we captured included objects as large as 200K bytes) 

storing an array of recording objects (e.g., the list of all scheduled recordings). 

Our client is multi-threaded, but since it mirrors a one-to-many relationship 

between set-top boxes and logic servers, each client thread accesses a unique 

set of objects at the memcached server. Using the Comcast trace as a guide, we 

pre-populate memcached with objects of 31 different size classes. We populate 

the cache to 60% full, to prevent evictions during experimentation. 

Since our traces were measured by querying a memcached server at 10-second 
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intervals, we do not have fine-grained information about the number of gets and 

sets that could be replaced with calls to invoke. To compensate for this, our 

memcached client is parameterized. It alternates between periods of low activity, 

during 

which a fixed number of operations are performed per second, and bursty 

periods, where it attempts to execute as many operations as possible. 

Parameters govern the number of operations that are sets, gets, or invokes, and 

the object sizes from which randomly selected elements will be chosen for use 

with those operations. We are also able to control the length and frequency of 

bursts. 

6 Evaluation 
In this section, we evaluate the performance of our extensions to memcached on 

a number of synthetic workloads. We ran memcached on a system with two Intel 

Xeon 5650 chips and 12 GB of RAM. This system has a total of 24 hardware 

threads (12 cores). Unless otherwise specified, we generated requests to this 

system from an identically configured machine with a single Intel Xeon 5650 (6 

cores/12 threads) and 6 GB of RAM. The machines were connected via a 

switched 1GBps network fabric. The software stack on both machines included 

Ubuntu Linux 13.10, GCC 4.8.1, memcached 1.4.20, Oracle Java 1.8.0_11, and 
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spymemcached 2.11.4. All experiments were run five times, and the average is 

reported. 

6.1 Microbenchmark Performance 

Our first experiment is a best-case study for fetch-and-phi. We did not use the 

workload described in Section 5. Instead, we populated the memcached server 

with a set of objects of the same size. Each thread of the client accessed a 

disjoint set of objects. The workload consists of getting the object, performing an 

O(n) operation that modifies the object one byte at a time, and then setting the 

object back into the cache. There were no cache evictions during the experiment.
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Figures 3 and 4 compare the performance of this workload as we vary three 

parameters. Bars labeled “Get/Set” are the baseline: they correspond to a 

configuration in which the client gets the object, modifies it, and then sends it 

back to the server. “Phi” corresponds to the case where the client uses invoke to 

request that the server perform the operation and then send the new object back 

to the client. In “Phi-NoReply”, the server modifies the object and stores it back to

the cache, but only sends an acknowledgment to the client; the new version of 

the object is not returned. In the “Phi” and “Phi-NoReply” experiments, we set the

atomic flag to true, so that updates were achieved as a compare-and-set. In 

additional experiments, we found the cost of atomicity to be negligible for all 

workloads. We leave as future work analysis of whether there exist workloads 

that would favor non-atomic fetch-and-phi. 

We ran this experiment at three object sizes: 256 bytes, 4K bytes, and 64K 

bytes. We also considered two client configurations. In the first configuration, 

labeled “remote”, we execute the client on a separate machine from the machine 

running memcached. In the second configuration, labeled “local”, we run the 

client and server on the same machine. This experiment isolates performance 

improvements that come from reduced network communication. 

There are two trends that emerge from this experiment. First, by contrasting the 
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remote and local experiments, we see that the most significant savings come 

from the reduction in round-trip network communication. Using either of the “Phi” 

approaches, the number of trips is halved. When objects are small, the difference

between returning the object, and returning an acknowledgment, is insignificant, 

and the two “Phi” curves are indistinguishable, though both significantly better 

than “Get/Set”. As object sizes increase, the additional bandwidth savings from 

sending a simple acknowledgment grows. At the largest object size, halving the 

number of round-trip communications saves 25% over “Get/Set”. 

6.2 Top-of-the-Hour Performance 

Our next set of experiments is based on the traces discussed in Section 5. We 

generated a variety of workloads that used Comcast protocol buffers. Parameters

included the distribution of operations per buffer size, the number of regular gets,

and the number of get/set pairs. We also varied the duration and frequency of 

bursts. During a burst, the client executes as many requests as possible; during 

non-burst periods, the client performs a fixed number of requests per second. 
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In Figure 5, we show one such experiment, which is performed on a cache 

populated with 10K byte protocol buffers. We oscillated between 30-second 

bursts, and 30 seconds of non-burst behavior. The figure shows the total number

of operations. An operation is either an unpaired get, or a get/set pair. In this 

manner, an invoke counts equal to a pair, and captures the notion of an 

operation from the client’s view. In keeping with the workload trace, get 

operations comprised 44% of the workload during bursts, and 62% of the 

workload during low-utilization periods. 

This result, which is representative of experiments with varying buffer sizes, 
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shows two key performance trends. The first is that even for a modestly large 

object size, and a computationally expensive operation (while we update on the 

order of 16 bytes, there is an O(n) overhead to de-serialize the protocol buffer 

before operating on it, and then another O(n) overhead to serialize it to a byte 

array before setting it back in the cache), we still achieve a speedup of close to 

40%. The second trend is that the benefit is linear in the ratio of get/set pairs that 

are replaced with invoke operations. 
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To gain a deeper understanding of this performance improvement, we re-ran the 

workload and requested statistics from the CPU performance monitoring unit 

(PMU). Figure 6b presents this data. The CPU utilization increases by 50% on 

average, with significant increases in instructions issued, instructions retired, 

cache accesses, cache hits, and cache misses. Of particular importance, we see 

that there is a higher ratio of cache hits, and a higher incidence of instructions 

issued in the same amount of time. These results show that operating on the 

object immediately after retrieving it has good locality, and also that we are using 

the CPU more effectively, since we are spending less time making system calls 

and performing network I/O. 

We were, however, surprised by the shear magnitude of the increase. We 

conducted an additional experiment, presented in Figure 6c, where we used a 

custom object format that did not require deserialization and re-serialization. 

Several of the PMU statistics dropped precipitously, and throughput increased 

even further (we do not present throughput numbers, since the technique does 

not generalize). This raises a concern: the object format, and the cost of 

converting between byte-array and object representations, can play a significant 

factor in overall performance. As the cache server performs more computation on

behalf of clients, care is needed. The savings in bandwidth and round-trip 
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communication, which is enjoyed by client and server, can be offset by increased

overhead to operate on the data at the server. 

6.3 Filtering Microbenchmark 

While our focus has been on using invoke to perform atomic fetch-and-phi, there 

are a number of other uses. One of particular interest is filtering, where the result 

of an operation is not set back into the cache. One can think of filtering as 

providing a way to limit the size of the payload returned to the client, or as a 

mechanism for performing simple queries directly against memcached. 
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In Figure 7, we compare the performance of filtering on four workloads. These 

workloads are parameterized by whether the objects in the cache require 

deserialization before they are accessed, by the size of the objects that are 

accessed, and by the amount of data that is accessed. We operated on two 

object sizes, 1K bytes and 10K bytes, and considered both “small” queries, which

returned a 4 byte field, and “large” queries that returned several hundred bytes. 

In general, filtering did not perform well, except in the case where the amount of 

data to return was small and the objects did not require deserialization. In our 

implementation, we never operate directly on an object stored in the cache. 

Instead, we lock the object, copy it, unlock it, and then pass the copy of the 

object to the function being invoked. Even when we used a raw object 

representation and could avoid the overhead of protocol buffer serialization and 

deserialization, this copying dominated for small filter operations. Since this 

experiment is something of a best case for filtering, we conclude that it may be 

necessary to operate on objects directly in order to achieve efficient filtering. We 

leave further study of this topic for future work. 

6.4 Space and CPU Utilization Implications 

In addition to serialization and deserialization of objects, some systems employ 

compression at the client before sending data to memcached. For example, this 
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behavior is the default in the spymemcached client library for objects above a 

user-tunable threshold. In this subsection, we explore the implications of 

compression on performance. We gathered objects of a variety of sizes, and then

evaluated the overhead to serialize, deserialize, compress, and decompress the 

objects. We also report compression ratios. 

Figure 8 presents the average time to serialize, deserialize, compress, and 

decompress the protocol buffers used in our workloads. All results are 

normalized to the time to deserialize a 1024-byte object. For reference, the 
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average deserialization time for such objects is 9.2 microseconds. 

Deserialization is marginally faster than serialization, with both operations scaling

sub-linearly in the size of the object: a 14K byte object deserializes in only 4.4x 

the time of a 1K byte object. However, the costs for compressing and 

decompressing are both significantly higher. Not only is compression slowest, its 

cost increases most rapidly with the size of the object, though still at a linear rate.

From this result, we argue that storing compressed data in the cache is likely to 

nullify any gains to be achieved by using fetch-and-phi. 

This raises an interesting question: what impact can be expected when 

compression is disabled? While we disabled compression in all of our 

experiments, it is enabled by default in the spymemcached client library, and is 

applied for objects above a threshold. The motivation is that compression can 

reduce both network bandwidth and the amount of RAM needed at the 

memcached server. 
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Table 2 presents the average size reduction we observed when compressing 

objects from the traces we gathered. Savings begin at 19%, and rise steadily to 

36%. Beyond 14K bytes, the compression rate remains constant. 

The tradeoff between using compression and using fetch-and-phi is nuanced. If 

fetch-and-phi can halve the number of round-trip communications, then the 

bandwidth savings will be greater than the 36% per-round-trip savings from 

compression. However, this savings does not apply to get operations. 

Similarly, without programmer intervention, it appears that disabling compression

will result in decreased capacity at the memcached server, since larger objects 

will be stored for the same workload. The impact can be even more severe than 

anticipated, since memcached uses a slab allocator: larger objects may spill into 

larger slab classes, and hence incur more internal fragmentation. On the other 

hand, if an application aggressively employs filtering along with fetch-and-phi, it 

may be possible to perform less denormalization of data. This, in turn, can 
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reduce the number of objects stored in the cache, as well as the number of 

objects stored in the persistence layer. We leave further exploration of this 

relationship as future work. 

7 Related Work 
There has been substantial research into distributed key/value stores, both 

persistent and in-memory. Due to the performance-critical nature of these 

systems, they are increasingly adopting complex low-level systems techniques to

achieve peak performance [4, 13]. In some cases, these systems are also 

tailored to specific workloads, such as Facebook’s TAO [1]. TAO’s cache is not a 

lookaside, but rather a write-through cache, tightly bound to an underlying 

MySQL-based persistent store. We believe that our work, which studies the 

performance of fetch-and-phi in an unmanaged language, is complementary to 

these efforts. In all cases, there is an awareness that decreasing communication 

bandwidth and lowering the latency of accesses to the cache layer is crucial to 

overall system performance. 

The filtering mechanism we discussed in this paper is similar to several prior 

proposals [2, 16, 19]. While these generally require the cache to be aware of the 

object layout, so that they can return specific fields of an object, there is no 

obstacle preventing such systems from supporting more complex filtering 
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operations. Our work takes the opposite approach, assuming nothing about the 

object format and leaving it up to the user-provided code to deserialize a copy of 

the data and compute over it. The best solution for real-world systems and 

applications is likely to fall somewhere in between: a limited set of operations, but

optimized for a workload whose data layout is known by the cache so that 

copying can be avoided. 

The first system we are aware of that supports arbitrary computation directly in 

the key/value store is Comet [5]. In Comet, objects can either be in an unknown 

format, or else Lua objects. In the latter case, objects can have triggers attached 

to them, which execute in response to gets and sets. Our work differs from 

Comet in a number of regards. From a performance perspective, Comet provides

persistence, and hence there is much more room to mask the latency of object 

serialization and deserialization. In that regard, our work can be thought of as 

providing a lower bound on the best-case latency. More importantly, Comet 

focused on the security of extensions and the reliability of the overall system. 

Whereas we studied memcached, which is rarely shared among applications, 

Comet was intended to support web services with untrusted clients. Thus 

security of extensions was a more significant factor than in our work. 

Another system which bears relation to our work is OOlong [15]. OOlong used 
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the analogy of database triggers to describe a technique for performing 

computation on a key/value store. OOlong provides some features that are more 

general than fetch-and-phi, such as allowing the get of object O to cause an 

update to some other object K. Unfortunately, we are not aware of any 

performance results for this system. 

8 Conclusions and Future Work 
In this work, we studied the impact of supporting client-requested computation 

within the context of a memcached server. Our extensions to memcached, which 

are based on the concept of a fetch-and-phi operation, have a minimal footprint 

(under 400 lines of code) and provide an orthogonal mechanism supporting 

fetch-and-phi and filtering. Our implementation also supports operations that do 

not send the new object as part of the response. Using traces from Comcast as 

the basis for our evaluation, we showed that fetch-and-phi operations have the 

potential to reduce overhead by over 30%. 

There are several exciting directions for future work. First, we showed that the 

cost of deserializing byte streams into objects was a critical overhead. Enabling 

operations (especially read-only operations) directly on the serialized form of 

objects could provide a significant performance boost. However, even this is 

unlikely to make low-cost filters practical. A second appealing research direction 
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is to consider performing computation (again, especially readonly operations) 

directly on the object as it is stored in the cache. This may require new 

approaches to locking inside of memcached, to prevent deadlocks with 

concurrent multi-object gets and sets. One appealing approach may be to use 

transactions [17]. Third, we have not yet studied multi-key operations (i.e., a 

generalization of fetch-and-phi to multiword compare-and-swap). Among other 

challenges, this introduces the need to ensure deadlock-freedom. However, 

when coupled with careful selection of hash functions, this could lead to 

substantial improvements in filtering, as a single request could aggregate data 

from multiple keys and provide it back to the client in a single message. 

Another direction to study is security and reliability. Our mechanism defaults to 

extensions provided as unmanaged C code, loaded into the memcached process

as shared objects. Sandboxing this code would increase reliability, though the 

overheads may be too high. Similarly, it would be possible to run extensions in 

an interpreter, though it is not clear that running an interpreter within the 

memcached process would be any more reliable than running untrusted client 

code. Whatever reliability mechanism is employed at an installation, we believe 

our work will provide a useful baseline for measuring performance overheads. 
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