
www.manaraa.com

Lehigh University
Lehigh Preserve

Theses and Dissertations

2015

Fetch-and-Phi in Memcached
Adam Michael Schaub
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Schaub, Adam Michael, "Fetch-and-Phi in Memcached" (2015). Theses and Dissertations. 2794.
http://preserve.lehigh.edu/etd/2794

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2794&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2794&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2794&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=preserve.lehigh.edu%2Fetd%2F2794&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2794?utm_source=preserve.lehigh.edu%2Fetd%2F2794&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

www.manaraa.com

Fetch-and-Phi in Memcached
Adam Schaub

ams314@lehigh.edu

Lehigh University

May 2015

www.manaraa.com

Thesis Signature Sheet

This thesis is accepted and approved in partial fulfillment of the

requirements for the Master of Science.

Date

Thesis Advisor

Thesis Co-Advisor

Department Chairperson

2

www.manaraa.com

Table of Contents
ABSTRACT...3
1 Introduction...4
2 The Memcached Client API and Extensions.. 9
3 The Client Interface...11

3.1 Implementing Invoke()..12
3.2 Usage Scenarios.. 13
3.3 Concerns..16

4 The Management Interface... 19
4.1 The Register() Function.. 20
4.2 Sandboxing and Reliability... 21

5 A Top of the Hour Workload...23
6 Evaluation... 27

6.1 Microbenchmark Performance..28
6.2 Top-of-the-Hour Performance...32
6.3 Filtering Microbenchmark.. 37
6.4 Space and CPU Utilization Implications...38

7 Related Work...41
8 Conclusions and Future Work...43
Acknowledgments..45
9 References...46
Vita...50

3

www.manaraa.com

ABSTRACT
Memcached and other in-memory distributed key-value stores play a critical role

in large-scale web applications, by reducing traffic to persistent storage and

providing an easy-to-access look-aside cache in which programmers can store

arbitrary data. These caches typically have a narrow interface, consisting only of

gets, sets, and compare-and-set. In the worst case, this interface can cause

significant inefficiencies as clients get large data items, perform small changes,

and then set the updated items back into the cache.

We present extensions to memcached that allow the system administrator to

dynamically load custom code modules into memcached, so that clients may

execute code directly on the memcached server. Our system permits both fetch-

and-phi operations, which update the cache, and filtering operations, which

compute a function over the data in the cache, and return the result to the client

without making an update to the cache. We evaluate our extensions on

benchmarks based on workload traces from a Cable/Internet service provider,

and find that our new functionality provides a means of dramatically reducing

network overheads and increasing responsiveness.

4

www.manaraa.com

1 Introduction
One of the most critical components of interactive distributed systems is an in-

memory cache of key/value pairs [1]. This cache can serve many roles, to

include providing fast access to information from persistent table stores like

HBase [19], BigTable [2], Silt [12], Cassandra [20], and Dynamo [3]; caching

results from expensive joins in traditional relational databases [1]; and storing the

result of expensive computations.

Memcached [14] is one of the most popular and widely-used key/value caches.

Memcached is a lookaside cache, and when a client fails to find data at a

memcached server, it must both (a) contact the next tier of the storage

infrastructure to acquire the data, and (b) decide whether to update memcached

with the data. Memcached uses an LRU policy to age and evict data, and is

oblivious to the nature of the data it stores: it treats keys and values as untyped

byte arrays. With regard to access control, memcached instances are open: they

assume they are protected by a firewall, and never configured to provide service

to untrusted clients. Any machine that can send requests to the memcached

server can get and set any key/value pair.

In embodying the mantra “do one thing, and do it well”, memcached and other in-

memory stores manage to provide high performance and value to a diverse

5

www.manaraa.com

spectrum of distributed systems, while consisting of a rather small and easy-to-

understand code base. At the same time, memcached is compatible with a

number of best practices in distributed computing, which ensure good system-

wide performance. It is well known that locality of data relative to the site of

computation is a critical factor in distributed systems [7, 11, 18], and replicated

memcached servers can be installed at network edges, to provide fast access to

most data. To improve load balancing [10], keys are hashed to decrease the

likelihood that any individual memcached server has a higher-than-average load,

and again, replicated memcached servers can be employed.

Despite these benefits, in-memory object caches can be a performance

bottleneck. The motivating example on which this work is based is the

infrastructure behind the user interface (UI) of Comcast’s XFINITY X1 platform.

Millions of set-top boxes in a geographic market serve as thin clients, forwarding

clicks from a customer’s remote control to Comcast logic servers, where the

clicks are processed. In response to a click, a logic server will access the cache

and/or persistence layer, and then render a new screen that is sent back to the

customer. The Comcast servers are configured in three layers: a Cassandra-

based persistent store, a memcached layer, and a custom logic layer where each

server is assigned hundreds of set-top boxes in a one-to-many relationship. Each

6

www.manaraa.com

layer is independently fault-tolerant and redundant, typically through replication.

Unlike many bursty workloads, this system experiences predictable spikes in

use. Consider the case of digital video recorder (DVR) operations: at a fixed time

(e.g., 9:00 PM), a million customers might simultaneously wish to stop recording

one program, and begin recording another. Each of the logic servers must, for

each of its dedicated set-top boxes, start or stop a physical recording operation,

and then update the customer’s UI metadata to indicate the new recording

status. The UI data must be stored several ways, since the underlying Cassandra

storage is denormalized; first, the individual recording is updated, and then the

denormalized views of the recordings (“scheduled recordings”, “in progress

recordings”, “completed recordings”) are updated.

Consumer habits necessitate that the data is cached for fast access, since the

customer is likely to verify that recordings have been initiated, and to frequently

browse through the DVR listing; allowing each query to reach the Cassandra

database would introduce too much latency. In contrast to DVR operations, these

interactive queries are not concentrated at the exact times when programs begin

and end. The result is a spike in utilization when DVR recording statuses change,

which has come to be known as the “top of the hour” problem. Engineers at

Comcast have managed to reduce the spike from orders of magnitude to about

7

www.manaraa.com

2.5x. However, the bursts are too regular to be mitigated through sharing other

servers, since the burst is periodic and relies on data being stored in-memory. In

effect, handling the bursts requires a large number of servers that are

underutilized most of the time.

In analyzing this problem, we identified a trend that we believe generalizes to

many workloads: writes of a datum are preceded by a read of the same datum,

and the amount of data modified by a write is a small fraction of the overall

object. When coupled with the fact that many objects are large (tens, if not

hundreds of kilobytes), an opportunity emerges: if it were possible to update the

object directly in the cache, and then return only the updated object, we could

halve the number of network round trips, and halve the required bandwidth.

The behavior we wish to achieve is depicted in Figure 1. On the left side, there

are two expensive communications, labeled 3 and 5, which correspond to getting

a large object O and setting the updated object O′ back into the cache. The

8

Figure 1: Default system behavior (left) and the behavior with in-cache computation (right). Arrows
represent the flow of information (requests and responses), and stars represent computation.

www.manaraa.com

messages sent in steps 2 and 6 are small, representing a get request, and an

(optional) acknowledgment. On the right hand side, when the computation

(represented by a star) migrates to the cache server, one round trip network

communication is avoided, and the only large object transmission occurs at step

4.

In this paper, we extend memcached to allow in-cache computing. Our system is

based around the concept of an atomic fetch-and-phi primitive [8], which allows a

programmer to instruct memcached to get an object, invoke a function on that

object (possibly involving programmer-specified parameters), and set the result

back into the cache, all in a single atomic operation that then returns the

computed value. We decompose the fetch-and-phi to relax atomicity, to elide the

set, or to omit the response. Through evaluation on microbenchmarks that use

traces from Comcast’s production servers, we show that moving computation into

the cache can reduce overheads and increase throughput by more than 30%.

The remainder of this paper is organized as follows. In Section 2, we provide a

brief overview of the memcached interface and API. Section 3 presents the

algorithm for our client-facing modifications to memcached, through which a

programmer can execute code on the memcached server. Section 4 details the

administrative interface we propose for supporting fetch-and-phi without

9

www.manaraa.com

completely opening up a server to the possibility of running arbitrary unreliable

code. In Section 5, we discuss a workload generator we created. The generator

uses traces collected from Comcast servers as the basis for the workloads run by

clients. Section 6 presents experiments, and Section 7 discusses related work.

Section 8 discusses future work and then conclusions.

2 The Memcached Client API and Extensions
The existing interface to memcached appears in Table 1. Several of these

functions can take multiple keys as parameters. For clarity, we omit discussion of

this functionality. Three functions comprise the primary API: get takes a key as its

parameter, and returns the corresponding object; set takes a key and value, and

updates the value stored at that key; delete removes a key/value pair. Each key

is stored along with a version number that is incremented by memcached on

every set, replace, append, prepend, incr, and delete. By using gets instead of

get, a client can observe this value. The cas operation employs this value to

achieve a read-modify-write effect, akin to load-linked/store conditional

instructions: it takes a key, a new value, and the value of the counter. It updates

the pair to the new value if and only if the counter values match. On a successful

cas, the counter value is updated.

10

www.manaraa.com

When the value stored with a key is an integer, the incr and decr functions can

be used to achieve an atomic increment or decrement in a single instruction.

Memcached effectively locks the key/value pair, updates the value, and then

releases the lock. The same approach can be used when the value is treated as

a raw byte array, and the desired operation is an append or prepend. However,

there is an additional constraint in this case: memcached uses a slab allocator,

such that every object has a size class associated with it. Within the size class,

each object is stored with some amount of internal fragmentation, and a prepend

or append will fail if the new object cannot fit in the object’s existing slab class.

The set, add, replace, and cas operations are not subject to this restriction, since

they assign the newly provided data to the key, instead of modifying the key in-

place.

11

www.manaraa.com

To this API, we add two new operations:

register(): The register() function provides a mechanism for performing inserts

and lookups into a map. The map stores < string, f unction > pairs, where the

string is a programmer-visible name. The function returns a boolean, indicating

whether or not it succeeded. It takes the following parameters:

Logically, the map is protected with a readers/writer lock, which is held in write

mode whenever a register() operation is performed. We discuss the use of the

register() function in Section 4, to include discussion of a technique through

which the use of a lock to protect the map can be avoided.

Invoke(): The invoke() function is used to execute a registered function on the

memcached server. It takes the following parameters:

12

www.manaraa.com

The API makes no assumptions about how invoked functions are used. The

boolean parameters provide the programmer with knobs for using the function as

a filter, a fetch-and-phi, or an atomic fetch-and-phi; and for indicating whether the

client expects a reply.

3 The Client Interface
In this section, we discuss the high-level implementation of the invoke function.

We then describe usage scenarios and potential pitfalls. We focus on an

implementation that executes user code directly in the context of the memcached

server process. Section 4.2 discusses a programmer-defined technique for

executing code in a more sandboxed setting.

3.1 Implementing Invoke()

Algorithm 1 presents the pseudocode for the invoke() operation. The client issues

an invoke request by supplying the name of a function to execute, the key whose

data will be used by the function, parameters, and a few flags.

The operation consists of five stages. The first stage entails locating the code

13

www.manaraa.com

that will be executed. This is achieved via a lookup in the map. Though generally

straightforward, we note that the map is not protected by a lock: the register

operation is responsible for ensuring that the map isn’t modified while it might be

accessed by client invoke operations.

In the second stage, we fetch the data currently associated with the key. We can

fetch the data along with its current version count (line 7) or else without the

version count (line 9), depending on whether the operation will ultimately perform

an atomic fetch-and-phi. Note that when update is false, the atomic flag is

superfluous. Furthermore, in the common case (where the named function is free

of side effects), invokes that do not set are naturally atomic, in that they have a

linearization point [9] at the time of the get.

The third stage of invoke() involves calling the requested function, passing the

key, current value, and parameters. This produces a status message

(success/failure) as well as a new byte array. This byte array may be a new

version of the value, or some computed value of some other type. The meaning

of the contents of the new_val parameter are user-defined.

The fourth stage is to update memcached so that the new value is associated

with the key. This can be done atomically or nonatomically, based on the

parameters to invoke(). For brevity, we omit details of how errors at this point are

14

www.manaraa.com

relayed to the client. The final stage returns the result of the function to the client,

if a reply was requested. Otherwise a short acknowledgment of success or failure

is returned to the client.

3.2 Usage Scenarios

While our focus is on reducing overhead for a pattern built upon get and set, our

invoke() implementation is general enough to support four usage patterns:

Basic Filtering: When the persistent layer is implemented using a NoSQL

database, it is likely that there will be denormalized data in the cache. This is a

common optimization for non-relational databases, where the programmer must

maintain the relationships among data by storing rows in an additional table. It is

often easier to over-denormalize, and store very large objects, in order to avoid

maintaining multiple denormalizations. In this case, as well as the case where

individual objects are large, filtering can dramatically reduce overhead.

At its simplest, filtering entails returning only part of the object, in order to reduce

bandwidth. For example, a client program attempting to get the next DVR

recording to initiate does not need a full list of scheduled recordings; if the

recordings are sorted by start time, then it suffices to return the first recording.

When all pending recordings are saved as a (serialized) array in memcached,

filtering allows the transmission of a specific array entry. To achieve filtering, the

15

www.manaraa.com

client calls invoke with both atomic and update set to false. Note that a simple

filter is an atomic operation, since the value is read atomically through a standard

get call.

Filtering with Computation: In the former case, filters were little more than field

selectors, serving to limit the amount of data returned to the client. It is equally

straightforward to employ a pure computation within the invoked function, and

thus to add computation to the filter. This enables, for example, computing

statistics over the entries of an array stored in the cache. Furthermore, the

function need not be pure. As an extreme example, the function could open

another connection to the same memcached server to request additional data.

Fetch-and-Phi The compare-and-set mechanism I nmemcached more closely

resembles the Load Linked/Store Conditional pair of instructions that are

common in RISC processors [8]. Specifically, an arbitrary amount of time can

pass between the get and the set, but the pair appears to be atomic as long as

there is no intervening update. In memcached, this is achieved by attaching a

counter to the pair, and incrementing it on every update. When both atomic and

update are true, the behavior of invoke gives precisely the behavior of a load-

linked/compute/store-conditional sequence in traditional shared memory

synchronization. For functions that are side-effect free, or whose side effects are

16

www.manaraa.com

not visible to concurrent threads, the result is an atomic fetch-and-phi. Note that

setting atomic to false results in a similar effect to implementing a shared counter

with loads and stores: atomicity can be violated if there is sharing, but it is safe

as long as the underlying pair (or counter) is not shared.

Set-and-Go When the client updates the cache, it often must also send a message

to the next level of the storage hierarchy (e.g., a NoSQL database) to ensure the

persistence of the new data. Whereas fetch-and-phi is ideal when the client does

not have the data on hand, set-and-go serves the case where the client can

compute the new value without a preceding query. In this case, rather than send

the entire new object to the cache, the client can re-execute the function at the

cache, store the result, and not send a reply. If the object is not found, then it

remains uncached. For cached objects, this pattern avoids sending large objects

after small modifications, an allows the in-cache update to execute concurrently

with the client.

3.3 Concerns

Any time code is dynamically loaded into a high-availability process, there are

causes for concern. Buggy code can cause the process to crash. Long-running

code can keep a thread occupied for an extended period, causing a service

degradation or denial of service. Worse, the code may interact with the operating

17

www.manaraa.com

system to cause the process to block, lose priority, or release needed resources.

As we discuss in Section 4, we do not allow clients to load arbitrary code without

the intervention of a system administrator. Since memcached servers are

typically not publicly accessible, this should provide the minimal needed

oversight to avoid the aforementioned problems.

There are three additional concerns that are more specific to our design. We

outline them briefly below:

Multiple Keys The memcached client interface allows a single get to request

multiple keys, or a single set to update multiple keys. We do not provide this

ability, and instead require each invoke to operate on a single key/value. This

choice is intended to provide clarity, since the semantics of a multi-key invoke

are ambiguous. Should several invokes be executed as a single atomic

transaction? Should a single function take several pairs as input, and produce

multiple outputs that all are set into the cache? Farther afield, it would even be

imaginable that operations could use some keys to locate input objects, and

others to identify output objects.

While the above opportunities are appealing, their value depends on an efficient

fetch-and-phi. Furthermore, there are additional programming concerns that are

outside the scope of this work. For example, any multi-key operation needs

18

www.manaraa.com

guarantees that the keys are all stored at the same memcached node, and this is

not easily guaranteed for common hashing functions. While coalescing multiple

independent invoke operations into a single message could decrease network

costs, we believe that such extensions are best left as future work, after

compelling use cases are identified.

Copying Overheads While our implementation and discussion are focused on

memcached, we took care to avoid algorithmic choices specific to memcached,

unless obvious alternatives exist (e.g., the technique we use to avoid using a

readers/writer lock to protect the map; see Section 4). However, this introduces

overhead due to data copying.

Specifically, when a get is performed, the value is copied from the cache to a

temporary buffer. In our system, the function is given this buffer as input. The

buffer must be manually reclaimed when invoke returns. Similarly, the function

may create a new buffer to store the new value of the key. This buffer is not

inserted directly into the cache, but instead is copied into a new pair object, after

which it must be reclaimed. The alternative is to hold the lock on a pair

throughout the invoke operation. However, this technique fails when the function

produces a new value that is of a significantly different size than the input value.

In this case, the memcached memory slab allocator would require the new value

19

www.manaraa.com

to be stored in a different slab class. The motivation for direct access to objects

in the cache, as opposed to copies, can only be in response to performance

concerns. We discuss this topic further in Section 6.

Data Formats Thus far, we have glossed over the actual formats of objects stored

in the cache, and the type of the parameter provided by the client during an

invoke call. Generally speaking, we leave these as client programmer-defined.

However, it is worth noting that in the common case, the object format is a

serialization of some other format (e.g., pickling in Python, or Google Protocol

Buffers [6]). Furthermore, some memcached client libraries implement

compression and decompression [21]. In these settings, the invoked code may

need to decompress, deserialize, compute, re-serialize, re-compress, and then

perform the set on line 19 or 21. Particularly in the case of compression, this can

introduce increased CPU utilization, and possibly slowdown.

Communication While we do not explicitly support communication from within an

invoked function, we do not forbid it. This creates a tension. On the one hand, it

is possible for a function to maintain a static pool of connections, and attempt to

contact other memcached servers, or the next level of the hierarchy, in order to

implement a form of write-through caching or atomic multi-object transactions.

We argue that such techniques are beyond the reasonable scope for our

20

www.manaraa.com

mechanism. For example, to implement a memory hierarchy properly, it would be

necessary to also provide a way to execute a set followed by a user-defined

function, without performing a get to acquire the data passed to the function and

to set. This complexity seems unjustifiable for a general-purpose system like

memcached, unless a use case is identified. However, should such a case arise,

we believe our work can easily be extended to support it.

4 The Management Interface
The obligation of the management interface is to provide a means through which

arbitrary functions can be made available for subsequent use by the invoke()

operation. Additional concerns relate to (a) how permission is granted for

providing new functions, and (b) how the execution of those functions is

sandboxed.

4.1 The Register() Function

We begin by describing the basic infrastructure for registering functions. We take

the position that arbitrary clients should not be allowed to install arbitrary code

into the memcached process. While it is possible to sandbox the execution of

code, even sandboxing mechanisms can result in denial of service if an arbitrary

function contains an infinite loop. To prevent this, our design requires a machine

21

www.manaraa.com

administrator in order to register a new function for use with invoke().

We make use of an environment variable to identify the root folder for all code

loaded into memcached. An administrator can copy shared object files into this

directory, whereas clients cannot. Once a file is loaded into this directory,

register() can be called to load the shared object, find a function within it, and add

a pointer to that function to a map of available functions. The sanitize() function

ensures that any relative path (specified by a client as part of an invoke()) is

converted to an absolute path rooted at the folder indicated by the environment

variable.

The behavior of register contains only one subtlety: the use of a maintenance

mode. In memcached, a handshake mechanism exists through which the cache

rebalance thread gains exclusive access to the entire cache. The mechanism

entails a lock hierarchy. At the top is a single “assoc_lock”, below which are per-

item locks. When a cache rebalance is required, the maintenance thread invokes

switch_item_lock(GLOBAL). This sets a flag to indicate that all client operations

should use the assoc_lock instead of item locks. The maintenance thread then

waits for all in-flight client operations to complete. It thread then acquires the

assoc_lock and performs its work. It is possible that new client requests have

arrived in the interim, but they now use the assoc_lock, and thus do not overlap

22

www.manaraa.com

with the rebalance. When the rebalance completes, the maintenance thread

invokes switch_item_lock(GRANULAR) to return to using per-item locks. The key

feature of this mechanism is that in the common case, threads only require fine-

grained item locks, but during rebalancing, the absence of concurrency prevents

the maintenance thread from acquiring these locks.

By connecting the registration of new functions with this mechanism, we can

ensure that the map is never modified while a client invoke is in progress. This

avoids the need for a readers/writer lock for the map, which would introduce a

bottleneck for simultaneous invoke calls.

4.2 Sandboxing and Reliability

For many environments, the requirement of administrator access to install code

suffices to provide a secure and reliable environment: new functions are

expected to be simple, so as not to affect the CPU load on the memcached

server, and hence they ought to be easy to statically analyze or verify through a

code review.

However, we recognize that in some circumstances this may prove insufficient.

For example, in an environment where the memcached clients are written in a

high-level language (e.g., Python), the requirement to write C code that operates

on pickled objects may be burdensome. We contend that this can be resolved

23

www.manaraa.com

through a level of indirection in the new code, without further impact on the

memcached code.

As a concrete example, we propose that an administrator might install a Python

process that listens on a named pipe for messages of the form (function, data,

parameters). In response to any message, the process will consult a local map of

functions, find the appropriate one, and execute it on the data and parameters

that are provided. It will then write its response to the pipe. If the registered C

function simply writes its parameters to the pipe and then awaits a reply, then the

same (modulo Python function name) C code can be registered for each Python

function. This process is somewhat more cumbersome than registering C code

directly, and it suffers from the overheads of both (a) inter-process

communication between memcached and the Python process; and (b) overheads

from the Python interpreter. However, it generalizes, and the same approach can

be leveraged for arbitrary managed languages. By using a timeout when reading

from the named pipe, the C code running in memcached can simply return an

error whenever erroneous code causes the Python process to crash. A daemon

can re-start the Python process periodically.

The purpose of this example is merely to demonstrate that additional sandboxing

can be introduced, if needed, to prevent erroneous code from crashing the

24

www.manaraa.com

memcached server. We believe that the open source community is best suited to

providing the infrastructure for creating this sandboxing on a per-language basis,

using a generic methodology such as that described above. Such an approach

will also allow environment-specific optimizations (e.g., using a pool of named

pipes, and a pool of independent Python interpreters, to avoid serialization on the

Python interpreter’s global lock).

5 A Top of the Hour Workload
As discussed in Section 1, the original motivation for this work was a regular

usage spike observed on Comcast servers. At the beginning of every hour, and

again on the half hour, requests to the memcached servers would increase

dramatically. Increases in response time from the memcached servers caused

cascading delays, since UIs could not be rendered until memcached responded.

A combination of scaling out and rewriting interface code resolved much of the

problem, but left a system that is underutilized most of the time.

25

www.manaraa.com

To understand this workload better, we collected statistics from a Comcast server

over a 10-minute period that included a spike. On ten-second intervals, we

collected statistics from the server about the number of operations performed on

each of its memory slabs. As seen in Figure 2, the workload exhibits a burst of

activity.

This burst is significant for several reasons. First, during the burst, the number of

set operations increases dramatically. Prior to the surge, the workload is 61%

gets and 39% sets. During the surge, it becomes 40% gets, and after the surge,

it has 55% gets. During the surge, there are two primary operations: among small

objects, there is an order of magnitude increase in the number of sets, as logic

servers mark DVR recordings as started or stopped, and then overwrite a single-

recording object of under 1000 bytes. The logic servers are able to cache these

26

www.manaraa.com

objects, and thus they need not perform a get before the set. However, they must

send the entire object, even though only 4 bytes change. The second operation

is an update to very large objects (over 10K bytes). These objects represent

denormalized rows, storing each customer’s set of recordings and their

corresponding states. When the small-object set occurs, the row becomes stale,

and must be updated to indicate the new recording state.

Without tracing each individual TV viewer’s click behavior, it is not possible to

determine the number of sets that (a) were part of a get/set pair, and (b) could be

replaced with a fetch-and-phi. However, there is strong evidence that these

operations were concentrated on large objects, where the ratio of gets to sets

remained relatively constant, though the numbers increased during the surge.

Similarly, the set operations on small objects can be optimized: rather than

sending an updated object, the logic servers can invoke a function that performs

the necessary modification to the object, and does not send a reply. Again, we

cannot precisely determine the frequency of these operations in the trace.

However, they roughly correspond to the increase in sets of small objects during

the surge.

To re-create this behavior, and to create similar behaviors, we implemented a

memcached client that is heavily parameterized, so that it can produce workloads

27

www.manaraa.com

of the same shape and operation mix as described above. Our client is a Java

program that uses the spymemcached client library to interface to the

memcached server. We extended spymemcached to support invoke and register

functions, in addition to the standard interface.

Like many real-world deployments, this workload at Comcast uses Google

protocol buffers to serialize and deserialize data, so that arbitrary objects can be

provided to memcached as byte streams. There are two primary object types in

the Comcast workload, which we generate and populate with anonymized data.

The first is a small object (roughly 480 bytes, though the exact size depends on

the length of a few strings) that describes a specific recording of a single show, to

include the state of the recording. The second is a large object (typically 10K

bytes, though the trace we captured included objects as large as 200K bytes)

storing an array of recording objects (e.g., the list of all scheduled recordings).

Our client is multi-threaded, but since it mirrors a one-to-many relationship

between set-top boxes and logic servers, each client thread accesses a unique

set of objects at the memcached server. Using the Comcast trace as a guide, we

pre-populate memcached with objects of 31 different size classes. We populate

the cache to 60% full, to prevent evictions during experimentation.

Since our traces were measured by querying a memcached server at 10-second

28

www.manaraa.com

intervals, we do not have fine-grained information about the number of gets and

sets that could be replaced with calls to invoke. To compensate for this, our

memcached client is parameterized. It alternates between periods of low activity,

during

which a fixed number of operations are performed per second, and bursty

periods, where it attempts to execute as many operations as possible.

Parameters govern the number of operations that are sets, gets, or invokes, and

the object sizes from which randomly selected elements will be chosen for use

with those operations. We are also able to control the length and frequency of

bursts.

6 Evaluation
In this section, we evaluate the performance of our extensions to memcached on

a number of synthetic workloads. We ran memcached on a system with two Intel

Xeon 5650 chips and 12 GB of RAM. This system has a total of 24 hardware

threads (12 cores). Unless otherwise specified, we generated requests to this

system from an identically configured machine with a single Intel Xeon 5650 (6

cores/12 threads) and 6 GB of RAM. The machines were connected via a

switched 1GBps network fabric. The software stack on both machines included

Ubuntu Linux 13.10, GCC 4.8.1, memcached 1.4.20, Oracle Java 1.8.0_11, and

29

www.manaraa.com

spymemcached 2.11.4. All experiments were run five times, and the average is

reported.

6.1 Microbenchmark Performance

Our first experiment is a best-case study for fetch-and-phi. We did not use the

workload described in Section 5. Instead, we populated the memcached server

with a set of objects of the same size. Each thread of the client accessed a

disjoint set of objects. The workload consists of getting the object, performing an

O(n) operation that modifies the object one byte at a time, and then setting the

object back into the cache. There were no cache evictions during the experiment.

30

www.manaraa.com

31

www.manaraa.com

32

www.manaraa.com

Figures 3 and 4 compare the performance of this workload as we vary three

parameters. Bars labeled “Get/Set” are the baseline: they correspond to a

configuration in which the client gets the object, modifies it, and then sends it

back to the server. “Phi” corresponds to the case where the client uses invoke to

request that the server perform the operation and then send the new object back

to the client. In “Phi-NoReply”, the server modifies the object and stores it back to

the cache, but only sends an acknowledgment to the client; the new version of

the object is not returned. In the “Phi” and “Phi-NoReply” experiments, we set the

atomic flag to true, so that updates were achieved as a compare-and-set. In

additional experiments, we found the cost of atomicity to be negligible for all

workloads. We leave as future work analysis of whether there exist workloads

that would favor non-atomic fetch-and-phi.

We ran this experiment at three object sizes: 256 bytes, 4K bytes, and 64K

bytes. We also considered two client configurations. In the first configuration,

labeled “remote”, we execute the client on a separate machine from the machine

running memcached. In the second configuration, labeled “local”, we run the

client and server on the same machine. This experiment isolates performance

improvements that come from reduced network communication.

There are two trends that emerge from this experiment. First, by contrasting the

33

www.manaraa.com

remote and local experiments, we see that the most significant savings come

from the reduction in round-trip network communication. Using either of the “Phi”

approaches, the number of trips is halved. When objects are small, the difference

between returning the object, and returning an acknowledgment, is insignificant,

and the two “Phi” curves are indistinguishable, though both significantly better

than “Get/Set”. As object sizes increase, the additional bandwidth savings from

sending a simple acknowledgment grows. At the largest object size, halving the

number of round-trip communications saves 25% over “Get/Set”.

6.2 Top-of-the-Hour Performance

Our next set of experiments is based on the traces discussed in Section 5. We

generated a variety of workloads that used Comcast protocol buffers. Parameters

included the distribution of operations per buffer size, the number of regular gets,

and the number of get/set pairs. We also varied the duration and frequency of

bursts. During a burst, the client executes as many requests as possible; during

non-burst periods, the client performs a fixed number of requests per second.

34

www.manaraa.com

In Figure 5, we show one such experiment, which is performed on a cache

populated with 10K byte protocol buffers. We oscillated between 30-second

bursts, and 30 seconds of non-burst behavior. The figure shows the total number

of operations. An operation is either an unpaired get, or a get/set pair. In this

manner, an invoke counts equal to a pair, and captures the notion of an

operation from the client’s view. In keeping with the workload trace, get

operations comprised 44% of the workload during bursts, and 62% of the

workload during low-utilization periods.

This result, which is representative of experiments with varying buffer sizes,

35

www.manaraa.com

shows two key performance trends. The first is that even for a modestly large

object size, and a computationally expensive operation (while we update on the

order of 16 bytes, there is an O(n) overhead to de-serialize the protocol buffer

before operating on it, and then another O(n) overhead to serialize it to a byte

array before setting it back in the cache), we still achieve a speedup of close to

40%. The second trend is that the benefit is linear in the ratio of get/set pairs that

are replaced with invoke operations.

36

www.manaraa.com

37

www.manaraa.com

To gain a deeper understanding of this performance improvement, we re-ran the

workload and requested statistics from the CPU performance monitoring unit

(PMU). Figure 6b presents this data. The CPU utilization increases by 50% on

average, with significant increases in instructions issued, instructions retired,

cache accesses, cache hits, and cache misses. Of particular importance, we see

that there is a higher ratio of cache hits, and a higher incidence of instructions

issued in the same amount of time. These results show that operating on the

object immediately after retrieving it has good locality, and also that we are using

the CPU more effectively, since we are spending less time making system calls

and performing network I/O.

We were, however, surprised by the shear magnitude of the increase. We

conducted an additional experiment, presented in Figure 6c, where we used a

custom object format that did not require deserialization and re-serialization.

Several of the PMU statistics dropped precipitously, and throughput increased

even further (we do not present throughput numbers, since the technique does

not generalize). This raises a concern: the object format, and the cost of

converting between byte-array and object representations, can play a significant

factor in overall performance. As the cache server performs more computation on

behalf of clients, care is needed. The savings in bandwidth and round-trip

38

www.manaraa.com

communication, which is enjoyed by client and server, can be offset by increased

overhead to operate on the data at the server.

6.3 Filtering Microbenchmark

While our focus has been on using invoke to perform atomic fetch-and-phi, there

are a number of other uses. One of particular interest is filtering, where the result

of an operation is not set back into the cache. One can think of filtering as

providing a way to limit the size of the payload returned to the client, or as a

mechanism for performing simple queries directly against memcached.

39

www.manaraa.com

In Figure 7, we compare the performance of filtering on four workloads. These

workloads are parameterized by whether the objects in the cache require

deserialization before they are accessed, by the size of the objects that are

accessed, and by the amount of data that is accessed. We operated on two

object sizes, 1K bytes and 10K bytes, and considered both “small” queries, which

returned a 4 byte field, and “large” queries that returned several hundred bytes.

In general, filtering did not perform well, except in the case where the amount of

data to return was small and the objects did not require deserialization. In our

implementation, we never operate directly on an object stored in the cache.

Instead, we lock the object, copy it, unlock it, and then pass the copy of the

object to the function being invoked. Even when we used a raw object

representation and could avoid the overhead of protocol buffer serialization and

deserialization, this copying dominated for small filter operations. Since this

experiment is something of a best case for filtering, we conclude that it may be

necessary to operate on objects directly in order to achieve efficient filtering. We

leave further study of this topic for future work.

6.4 Space and CPU Utilization Implications

In addition to serialization and deserialization of objects, some systems employ

compression at the client before sending data to memcached. For example, this

40

www.manaraa.com

behavior is the default in the spymemcached client library for objects above a

user-tunable threshold. In this subsection, we explore the implications of

compression on performance. We gathered objects of a variety of sizes, and then

evaluated the overhead to serialize, deserialize, compress, and decompress the

objects. We also report compression ratios.

Figure 8 presents the average time to serialize, deserialize, compress, and

decompress the protocol buffers used in our workloads. All results are

normalized to the time to deserialize a 1024-byte object. For reference, the

41

www.manaraa.com

average deserialization time for such objects is 9.2 microseconds.

Deserialization is marginally faster than serialization, with both operations scaling

sub-linearly in the size of the object: a 14K byte object deserializes in only 4.4x

the time of a 1K byte object. However, the costs for compressing and

decompressing are both significantly higher. Not only is compression slowest, its

cost increases most rapidly with the size of the object, though still at a linear rate.

From this result, we argue that storing compressed data in the cache is likely to

nullify any gains to be achieved by using fetch-and-phi.

This raises an interesting question: what impact can be expected when

compression is disabled? While we disabled compression in all of our

experiments, it is enabled by default in the spymemcached client library, and is

applied for objects above a threshold. The motivation is that compression can

reduce both network bandwidth and the amount of RAM needed at the

memcached server.

42

www.manaraa.com

Table 2 presents the average size reduction we observed when compressing

objects from the traces we gathered. Savings begin at 19%, and rise steadily to

36%. Beyond 14K bytes, the compression rate remains constant.

The tradeoff between using compression and using fetch-and-phi is nuanced. If

fetch-and-phi can halve the number of round-trip communications, then the

bandwidth savings will be greater than the 36% per-round-trip savings from

compression. However, this savings does not apply to get operations.

Similarly, without programmer intervention, it appears that disabling compression

will result in decreased capacity at the memcached server, since larger objects

will be stored for the same workload. The impact can be even more severe than

anticipated, since memcached uses a slab allocator: larger objects may spill into

larger slab classes, and hence incur more internal fragmentation. On the other

hand, if an application aggressively employs filtering along with fetch-and-phi, it

may be possible to perform less denormalization of data. This, in turn, can

43

www.manaraa.com

reduce the number of objects stored in the cache, as well as the number of

objects stored in the persistence layer. We leave further exploration of this

relationship as future work.

7 Related Work
There has been substantial research into distributed key/value stores, both

persistent and in-memory. Due to the performance-critical nature of these

systems, they are increasingly adopting complex low-level systems techniques to

achieve peak performance [4, 13]. In some cases, these systems are also

tailored to specific workloads, such as Facebook’s TAO [1]. TAO’s cache is not a

lookaside, but rather a write-through cache, tightly bound to an underlying

MySQL-based persistent store. We believe that our work, which studies the

performance of fetch-and-phi in an unmanaged language, is complementary to

these efforts. In all cases, there is an awareness that decreasing communication

bandwidth and lowering the latency of accesses to the cache layer is crucial to

overall system performance.

The filtering mechanism we discussed in this paper is similar to several prior

proposals [2, 16, 19]. While these generally require the cache to be aware of the

object layout, so that they can return specific fields of an object, there is no

obstacle preventing such systems from supporting more complex filtering

44

www.manaraa.com

operations. Our work takes the opposite approach, assuming nothing about the

object format and leaving it up to the user-provided code to deserialize a copy of

the data and compute over it. The best solution for real-world systems and

applications is likely to fall somewhere in between: a limited set of operations, but

optimized for a workload whose data layout is known by the cache so that

copying can be avoided.

The first system we are aware of that supports arbitrary computation directly in

the key/value store is Comet [5]. In Comet, objects can either be in an unknown

format, or else Lua objects. In the latter case, objects can have triggers attached

to them, which execute in response to gets and sets. Our work differs from

Comet in a number of regards. From a performance perspective, Comet provides

persistence, and hence there is much more room to mask the latency of object

serialization and deserialization. In that regard, our work can be thought of as

providing a lower bound on the best-case latency. More importantly, Comet

focused on the security of extensions and the reliability of the overall system.

Whereas we studied memcached, which is rarely shared among applications,

Comet was intended to support web services with untrusted clients. Thus

security of extensions was a more significant factor than in our work.

Another system which bears relation to our work is OOlong [15]. OOlong used

45

www.manaraa.com

the analogy of database triggers to describe a technique for performing

computation on a key/value store. OOlong provides some features that are more

general than fetch-and-phi, such as allowing the get of object O to cause an

update to some other object K. Unfortunately, we are not aware of any

performance results for this system.

8 Conclusions and Future Work
In this work, we studied the impact of supporting client-requested computation

within the context of a memcached server. Our extensions to memcached, which

are based on the concept of a fetch-and-phi operation, have a minimal footprint

(under 400 lines of code) and provide an orthogonal mechanism supporting

fetch-and-phi and filtering. Our implementation also supports operations that do

not send the new object as part of the response. Using traces from Comcast as

the basis for our evaluation, we showed that fetch-and-phi operations have the

potential to reduce overhead by over 30%.

There are several exciting directions for future work. First, we showed that the

cost of deserializing byte streams into objects was a critical overhead. Enabling

operations (especially read-only operations) directly on the serialized form of

objects could provide a significant performance boost. However, even this is

unlikely to make low-cost filters practical. A second appealing research direction

46

www.manaraa.com

is to consider performing computation (again, especially readonly operations)

directly on the object as it is stored in the cache. This may require new

approaches to locking inside of memcached, to prevent deadlocks with

concurrent multi-object gets and sets. One appealing approach may be to use

transactions [17]. Third, we have not yet studied multi-key operations (i.e., a

generalization of fetch-and-phi to multiword compare-and-swap). Among other

challenges, this introduces the need to ensure deadlock-freedom. However,

when coupled with careful selection of hash functions, this could lead to

substantial improvements in filtering, as a single request could aggregate data

from multiple keys and provide it back to the client in a single message.

Another direction to study is security and reliability. Our mechanism defaults to

extensions provided as unmanaged C code, loaded into the memcached process

as shared objects. Sandboxing this code would increase reliability, though the

overheads may be too high. Similarly, it would be possible to run extensions in

an interpreter, though it is not clear that running an interpreter within the

memcached process would be any more reliable than running untrusted client

code. Whatever reliability mechanism is employed at an installation, we believe

our work will provide a useful baseline for measuring performance overheads.

47

www.manaraa.com

Acknowledgments
We thank John McCann for many helpful discussions during the conduct of this

research. We also thank Sree Kotay and Paul Bosco, who introduced us to the

top-of-the-hour problem. Thanks to Michael Spear for his guidance and aid.

This material is based upon work supported by the National Science Foundation

under Grants CAREER-1253362 and CCF-1218530. This work was also

supported through a Comcast TechFund grant. Any opinions, findings, and

conclusions or recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of the National Science

Foundation or of Comcast.

9 References
[1] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding, J. Ferris,

A. Giardullo, S. Kulkarni, H. Li,

M. Marchukov, D. Petrov, L. Puzar, Y. J. Song, and

V. Venkataramani. TAO: Facebook’s Distributed Data Store for the Social Graph.

In Proceedings of the USENIX Annual Technical Conference, San Jose, CA, June

2013.

[2] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach,

M. Burrows, T. Chandra, A. Fikes, and R. Gruber. Bigtable: A Distributed Storage

48

www.manaraa.com

System for Structured Data. In Proceedings of the 7th Symposium on Operating

System Design and Implementation, Seattle, WA, Nov. 2006.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A.

Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s

Highly Available Key-Value Store. In Proceedings of the 21st ACM Symposium on

Operating Systems Principles, Stevenson, WA, Oct. 2007.

[4] A. Dragojevic, D. Narayanan, O. Hodson, and M. Castro. FaRM: Fast

Remote Memory. In Proceedings of the 11th USENIX Symposium on Networked

Systems Design and Implementation, Seattle, WA, Apr. 2014.

[5] R. Geambasu, A. Levy, T. Kohno, A. Krishnamurthy, and H. Levy. Comet: An

Active Distributed Key-Value Store. In Proceedings of the 9th USENIX Symposium on

Operating Systems Design and Implementation, Vancouver, BC, Canada, Oct. 2010.

[6] Google Inc. Protocol Buffers, 2014. https://developers.google.com/protocol-

buffers/.

[7] P. K. Gunda, L. Ravindranath, C. Thekkath, Y. Yu, and L. Zhuang. Nectar:

Automatic Management of Data and Computation in Datacenters. In Proceedings

of the 9th USENIX Symposium on Operating Systems Design and Implementation,

Vancouver, BC, Canada, Oct. 2010.

49

www.manaraa.com

[8] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan

Kaufmann, 2008.

[9] M. P. Herlihy and J. M. Wing. Linearizability: a Correctness Condition for

Concurrent Objects. ACM Transactions on Programming Languages and Systems,

12(3):463–492, 1990.

[10] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom,

D. Williams, and P. Kalnis. Mizan: A System for Dynamic Load Balancing in

Large-scale Graph Processing. In Proceedings of the EuroSys2013 Conference,

Prague, Czech Republic, Apr. 2013.

[11] C. Kozyrakis. Resource Efficient Computing for Warehouse-scale

Datacenters. In Proceedings of the Design, Automation, and Test in Europe Conference,

Grenoble, France, Mar. 2013.

[12] H. Lim, B. Fan, D. Andersen, and M. Kaminsky. SILT: A Memory-Efficient,

High-Performance Key-Value Store. In Proceedings of the 23rd ACM Symposium on

Operating Systems Principles, Cascais, Portugal, Oct. 2011.

[13] H. Lim, D. Han, D. Andersen, and M. Kaminsky. MICA: A Holistic Approach

to Fast In-Memory Key-Value Storage. In Proceedings of the 11th USENIX

Symposium on Networked Systems Design and Implementation, Seattle, WA, Apr.

50

www.manaraa.com

2014.

[14] memcached.org. Memcached, 2014. http://memcached.org/. [15] C. Mitchell,

R. Power, and J. Li. Oolong: Programming

Asynchronous Distributed Applications with Triggers. In

Proceedings of the 23rd ACM Symposium on Operating

Systems Principles, Cascais, Portugal, Oct. 2011.

[16] S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao, J. Lopez,

G. Gibson, A. Fuchs, and B. Rinald. YCSB++ : Benchmarking and Performance

Debugging Advanced Features in Scalable Table Stores. In Proceedings of the 2nd

ACM Symposium on Cloud Computing, Cascais, Portugal, Oct. 2011.

[17] W. Ruan, T. Vyas, Y. Liu, and M. Spear. Transactionalizing Legacy Code:

An Experience Report Using GCC and Memcached. In Proceedings of the 19th

International Conference on Architectural Support for Programming Languages and

Operating Systems, Salt Lake City, UT, Mar. 2014.

[18] M. Saad and B. Ravindran. HyFlow: A High Performance Distributed

Software Transactional Memory Framework. In Proceedings of the International

ACM Symposium on High Performance and Distributed Computing, San Jose, CA,

June 2011.

51

www.manaraa.com

[19] The Apache Software Foundation. Apache HBase, 2014.

http://hbase.apache.org/.

[20] The Apache Software Foundation. The Apache Cassandra Project, 2014.

http://cassandra.apache.org/.

[21] YourKit, LLC. spymemcached, 2014.

https://code.google.com/p/spymemcached/.

52

www.manaraa.com

Vita
Adam Schaub was born in Richmond, Indiana on October 20th, 1991. At the age

of 5, he moved with his parents Barry and Linda Schaub to Middleburg

Pennsylvania, where he graduated Midd West High Schaub. From 2010-2014

Adam attended Lehigh University and obtained a B.S. in Computer Engineering

in May 2014. He is currently finishing an M.S. in Computer Science from Lehigh

University, to be earned in May 2015. During his time at Lehigh, Adam has been

a Teaching Assistant for ECE 33 (Introduction to Computer Engineering) and

ECE 138 (Digital Systems Laboratory).

53

www.manaraa.com

Fetch-and-Phi in Memcached
Adam Schaub

ams314@lehigh.edu

Lehigh University

May 2015

54

	Lehigh University
	Lehigh Preserve
	2015

	Fetch-and-Phi in Memcached
	Adam Michael Schaub
	Recommended Citation

	ABSTRACT
	1 Introduction
	2 The Memcached Client API and Extensions
	3 The Client Interface
	3.1 Implementing Invoke()
	3.2 Usage Scenarios
	3.3 Concerns

	4 The Management Interface
	4.1 The Register() Function
	4.2 Sandboxing and Reliability

	5 A Top of the Hour Workload
	6 Evaluation
	6.1 Microbenchmark Performance
	6.2 Top-of-the-Hour Performance
	6.3 Filtering Microbenchmark
	6.4 Space and CPU Utilization Implications

	7 Related Work
	8 Conclusions and Future Work
	Acknowledgments
	9 References
	Vita

